Топ-100

Теория вероятностей и математическая статистика  

МОСКОВСКИЙ МЕЖДУНАРОДНЫЙ УНИВЕРСИТЕТ (ММУ, МУМ) (РЕШЕНИЕ И ОТВЕТЫ ПО ТЕСТУ ОТ 100 РУБ)

Оставьте заявку и (контакты ниже), и мы поможем с решением и ответом на тест.

ВОПРОСЫ по предмету

Примеры вопросов по предмету

Теория вероятностей и математическая статистика


  • В урне 14 белых и 7 черных шаров. Из урны вынимают наугад сразу два шара. Найдите вероятность того, что оба будут белыми
  • Одновременно бросают 5 монет. Найдите вероятность того, что решками выпадут ровно 3 из них
  • Вероятность события А в одном испытании равна 1/2. Найдите вероятность того, что в серии из 6 независимых испытаний событие А произойдет 3 раза
  • В урне 12 белых и 8 черных шаров. Из урны вынимают наугад сразу два шара. Найдите вероятность того, что оба будут белыми
  • В вазе 9 яблок и 5 бананов. Из вазы вынимают наугад сразу два фрукта. Найдите вероятность того, что хотя бы один из них - яблоко
  • Одновременно бросают 7 монет. Найдите вероятность того, что орлами выпадут ровно 6 из них
  • В урне 10 чёрных и 20 белых шаров. Из урны вынимают наугад сразу два шара. Найдите вероятность того, что оба будут чёрными
  • В урне 10 чёрных и 20 зеленых шаров. Из урны вынимают наугад сразу два шара. Найдите вероятность того, что они будут разного цвета
  • В урне 10 желтых и 14 синих шаров. Из урны вынимают наугад сразу два шара. Найдите вероятность того, что оба будут желтыми
  • Вероятность события А в одном испытании равна 3/4. Найдите вероятность того, что в серии из 4 независимых испытаний событие А произойдет 2 раза
  • Вероятность события А в одном испытании равна 1/2. Найдите вероятность того, что в серии из 8 независимых испытаний событие А произойдет 6 раз
  • Детали поступают на общий конвейер от двух станков, производительности которых относятся как 2:1. Вероятность изготовления качественной детали для этих станков равны соответственно 3/4 и 2/3. Наудачу взятая деталь оказалась качественной. Найти вероятность того, что она изготовлена на первом станке
  • Вероятности независимых событий А и В равна соответственно 1/2 и 4/5. В результате испытания произошло ровно одно из них. Найдите вероятность того, что это было событие А
  • Имеется 12 винтовок с оптическим прицелом и 6 винтовок без оптического прицела. Вероятность поражения мишени из винтовки с оптическим прицелом равна 9/10 , без оптического прицела - 1/2. Из случайно взятой винтовки цель поражена. Найти вероятность того, что была взята винтовка с оптическим прицелом
  • Вероятности независимых событий А и В равна соответственно 6/7 и 2/3. В результате испытания произошло ровно одно из них. Найдите вероятность того, что это было событие А
  • Всхожесть моркови составляет 50%, свеклы – 30%. В лаборатории посадили по одному семени каждого овоща. Взошел один росток. Найти вероятность, что это свеколка
  • Всхожесть моркови составляет 50%, свеклы – 80%. В лаборатории посадили по одному семени каждого овоща. Взошел один росток. Найти вероятность, что это морковка
  • В вазе 13 бананов, 7 апельсинов и 8 яблок. Найдите вероятность того, что вынутый фрукт не банан
  • В урне 12 желтых и 10 белых шаров. Из урны вынимают наугад сразу два шара. Найдите вероятность того, что оба будут желтыми
  • Вероятность события А в одном испытании равна 3/4. Найдите вероятность того, что в серии из 3 независимых испытаний событие А произойдет 2 раза
  • Вероятность сдачи теста для Андрея равна 4/5. для Бориса – 1/3. Тест сдал один из них. Найдите вероятность того, что это был Борис
  • Случайная величина ξ нормально распределена с параметрами a=-2, b=20. С точностью 2 знака после запятой найдите P(4ξ-42<0)
  • Детали поступают на общий конвейер от двух станков, производительности которых относятся как 1:2. Вероятность изготовления качественной детали для этих станков равны соответственно 3/5 и 7/10. Наудачу взятая деталь оказалась качественной. Найти вероятность того, что она изготовлена на первом станке
  • Случайная величина ξ нормально распределена с параметрами a=-10, b=5. С точностью 2 знака после запятой найдите P(ξ< -17)
  • Случайная величина ξ нормально распределена с параметрами a=9, b=19. С точностью 2 знака после запятой найдите P(4ξ+46<0)
  • Детали поступают на общий конвейер от двух станков, производительности которых относятся как 5:7. Вероятность изготовления качественной детали для этих станков равны соответственно 2/3 и 4/7. Наудачу взятая деталь оказалась качественной. Найти вероятность того, что она изготовлена на первом станке
  • Случайная величина ξ нормально распределена с параметрами a=10, b=10. С точностью 2 знака после запятой найдите P(4ξ -23<0)
  • Дискретная случайная величина ξ задана таблицей распределения: (-6 7 8)
  • При одном выстреле танк поражает цель с р = 0,8. Найти вероятность Р, что при трех выстрелах первые две цели будут поражены, а третий выстрел – мимо.
  • Каждый год из 100 выпускников факультета ВУЗа в среднем в аспирантуру поступают 2 выпускника ВУЗа. Найти вер. Р, что в этом году из 100 выпускников в аспирантуру поступят 3 выпускника.
  • Футбольная команда играет поочередно матч дома и матч на выезде. Команда выигрывает домашний матч с р1 = 0,7 , на выезде с р2 = 0,5. Найти вероятность Р, что текущий матч команда выиграет.
  • Гонщик, как правило, выигрывает одну автогонку с вероятностью р = 0,2. Определить вероятность Р, что из двух следующих гонок он не выиграет ни одну гонку.
  • В пустыне Гоби в год падает примерно 730 метеоритов. Найти вероятность Р, что завтра в пустыне упадет ровно 1 метеорит.
  • В шахматном турнике студент играет половину партий белыми и половину партий черными фигурами. Белыми он выигрывает партию с р1 = 0,7, черными фигурами с р2 = 0,4. Найти P, что он выиграет текущую партию.
  • Каждая сотая деталь, выпускаемая в цехе, бракованная. Найти вероятность Р, что в партии из 200 деталей 2 детали – брак.
  • Зенитная установка сбивает самолет одним выстрелом с р = 0,6. Найти вероятность Р , что в случае четырех выстрелов по эскадрильи зенитная установка собьет ровно 2 самолета.
  • Белый олень рождается в каждом 100-ом случае. Найти Р, что среди в этом году среди 200 новорожденных оленей родится ровно 2 альбиноса.
  • В среднем на каждой сотой странице книги – опечатка. Найти вероятность Р того , что на 200 страницах книги встретятся ровно 3 опечатки.
  • На полке стоят 2 книги по физике и 3 книги по экономике. Случайным образом с полки снимают 3 книги. Найти вероятность Р, что это будут 1 книга по физике и 2 книги по экономике.
  • В пирамиде стоят 5 винтовок, из них две имеют оптический прицел. Вероятность, что цель будет поражена из обычной винтовки р1=0,8, а из винтовки с оптическим прицелом р2 = 0,9.
  • Найти вероятность Р, что цель будет поражена при выстреле из случайно Лидер велотура в среднем побеждает в каждой третьей гонке. Найти вероятность Р, что в трех предстоящих гонках велотура он победит ровно 2 раза.
  • В коробке 3 нормальны и 2 бракованные лампочки. Случайным образом одна лампочка разбилась. Найти вероятность Р, что случайно взятая из коробки лампочка – брак.
  • Лучник попадает в цель одним выстрелом с р = 0,8. Найти вероятности, что в случае четырех выстрелов он попадет в цель ровно 2 раза.